000 | 03508nlm1a2200445 4500 | ||
---|---|---|---|
001 | 669431 | ||
005 | 20231030042222.0 | ||
035 | _a(RuTPU)RU\TPU\network\40671 | ||
035 | _aRU\TPU\network\40669 | ||
090 | _a669431 | ||
100 | _a20230505a2023 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aCH | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aThe Interaction between a Liquid Combustion Front and a Fire Barrier Made of CO2 Hydrate _fO. S. Gaydukova, I. G. Donskoy, S. Ya. Misyura [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 59 tit.] | ||
330 | _aThis paper presents experimental research into the propagation of a liquid fuel combustion front interacting with a fire barrier made of CO2 hydrate and ice. The combustible liquids studied here were kerosene, gasoline, Diesel fuel, oil, petroleum, and alcohol. The experiments with gas hydrate involved fire barriers based on powder and tablets. Heat and mass transfer and phase transitions in the area between the fire barrier and the combustion front were found to play a fundamental role. The liquid fuel combustion fronts propagate at a velocity ranging from 0.1 m/s to 3 m/s under natural convection. Forced convection leads to 2- to 5-fold changes in the flame propagation velocities. According to our experiments, 2–4 cm is the minimum width of a CO2 hydrate fire barrier for stopping the flame combustion front. We also determined the contribution of the gas hydrate dissociation to fire suppression and identified the conditions of the combustion front stoppage. The dimensionless processing of experimental data made them scalable to industrial applications. Finally, the experimental findings were also used to develop physical and mathematical models predicting the necessary and sufficient amount of CO2 hydrate in a fire barrier to provide the effective deceleration and stoppage of a flame combustion front. | ||
461 | _tFire | ||
463 |
_tVol. 6, iss. 3 _v[124, 25 p.] _d2023 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aCO2 hydrate granules | |
610 | 1 | _aextinguishing agents | |
610 | 1 | _acombustible liquids | |
610 | 1 | _aliquid fuels | |
610 | 1 | _aflame front propagation | |
610 | 1 | _afire containment | |
701 | 1 |
_aGaydukova _bO. S. _cspecialist in the field of heat and power engineering _cResearch Engineer of Tomsk Polytechnic University _f1993- _gOlga Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\46480 |
|
701 | 1 |
_aDonskoy _bI. G. _gIgor Gennadjevich |
|
701 | 1 |
_aMisyura _bS. Ya. _cspecialist in the field of power engineering _cleading researcher of Tomsk Polytechnic University, candidate of technical sciences _f1964- _gSergey Yakovlevich _2stltpush _3(RuTPU)RU\TPU\pers\39641 |
|
701 | 1 |
_aMorozov _bV. S. _gVladimir Sergeevich |
|
701 | 1 |
_aVolkov _bR. S. _cspecialist in the field of power engineering _cAssociate Professor of the Tomsk Polytechnic University, candidate of technical Sciences _f1987- _gRoman Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\33926 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20230505 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.3390/fire6030124 | |
942 | _cCF |