000 | 03356nlm1a2200349 4500 | ||
---|---|---|---|
001 | 669546 | ||
005 | 20231030042226.0 | ||
035 | _a(RuTPU)RU\TPU\network\40798 | ||
035 | _aRU\TPU\network\39156 | ||
090 | _a669546 | ||
100 | _a20230626a2023 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aThe influence of the flexoelectric effect on materials properties with the emphasis on photovoltaic and related applications: A review _fR. A. Surmenev, M. A. Surmeneva |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 261 tit.] | ||
330 | _aThe research community is in permanent search of novel materials and exploitation of already elaborated phenomena to reveal yet unknown materials characteristics. Flexoelectricity has been in the spotlight lately because of its unique capacity to modulate electrical, optoelectronic, photovoltaic, and related properties and other characteristics of materials and devices. Nonetheless, potential limits on further progress of materials performance owing to incomplete knowledge about this effect are still not investigated to a sufficient extent. This review is focused on the most recent achievements on flexoelectric materials and on strain engineering strategies for modulating a strain gradient and flexoelectric response, with an emphasis on photovoltaic and related applications. Photodetectors based on flexoelectric materials and structures are discussed, and a brief overview of alternative (nonphotovoltaic) and emerging applications and challenges is provided. It is suggested that the most important materials for photovoltaic and related applications range from low-dimensional and thin-film ferroelectric semiconductors (which for example can be designed in an alternative way, according to the “barrier layer capacitor” principle) to conducting materials that are not restricted by the Shockley–Queisser limit. Such materials enable ultrafast charge carrier separation and enhanced photocurrents, photovoltages, and other photoelectric parameters of devices under strain gradients, compared with available analogs. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tMaterials Today | ||
463 |
_tVol. XX _v[X р.] _d2023 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
700 | 1 |
_aSurmenev _bR. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences _f1982- _gRoman Anatolievich _2stltpush _3(RuTPU)RU\TPU\pers\31885 |
|
701 | 1 |
_aSurmeneva _bM. A. _cspecialist in the field of material science _cengineer-researcher of Tomsk Polytechnic University, Associate Scientist _f1984- _gMaria Alexandrovna _2stltpush _3(RuTPU)RU\TPU\pers\31894 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20230626 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.mattod.2023.05.026 | |
942 | _cCF |