000 | 03393nlm1a2200469 4500 | ||
---|---|---|---|
001 | 669607 | ||
005 | 20231030042228.0 | ||
035 | _a(RuTPU)RU\TPU\network\40859 | ||
035 | _aRU\TPU\network\39643 | ||
090 | _a669607 | ||
100 | _a20230710a2023 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aCH | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aFeatures of Helium-Vacancy Complex Formation at the Zr/Nb Interface _fL. A. Svyatkin, D. V. Terenteva , R. S. Laptev |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 46 tit.] | ||
330 | _aA first-principles study of the atomic structure and electron density distribution at the Zr/Nb interface under the influence of helium impurities and helium–vacancy complexes was performed using the optimised Vanderbilt pseudopotential method. For the determination of the preferred positions of the helium atom, the vacancy and the helium–vacancy complex at the interface, the formation energy of the Zr-Nb-He system has been calculated. The preferred positions of the helium atoms are in the first two atomic layers of Zr at the interface, where helium–vacancy complexes form. This leads to a noticeable increase in the size of the reduced electron density areas induced by vacancies in the first Zr layers at the interface. The formation of the helium–vacancy complex reduces the size of the reduced electron density areas in the third Zr and Nb layers as well as in the Zr and Nb bulk. Vacancies in the first niobium layer near the interface attract the nearest zirconium atoms and partially replenish the electron density. This may indicate a possible self-healing of this type of defect. | ||
461 | _tMaterials | ||
463 |
_tVol. 16, iss. 10 _v[3742, 11 p.] _d2023 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _ananoscale multilayer | |
610 | 1 | _acoatings | |
610 | 1 | _ahelium | |
610 | 1 | _avacancy | |
610 | 1 | _azirconium/niobium interface | |
610 | 1 | _adensity functional theory | |
610 | 1 | _aнаноразмерные многослойные покрытия | |
610 | 1 | _aгелий | |
610 | 1 | _aцирконий-ниобиевый сплав | |
610 | 1 | _aтеория функционала плотности | |
700 | 1 |
_aSvyatkin _bL. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences _f1988- _gLeonid Aleksandrovich _2stltpush _3(RuTPU)RU\TPU\pers\34216 |
|
701 | 1 |
_aTerenteva _bD. V. _cфизик _cинженер Томского политехнического университета _f1999- _gDaria Vitalevna _2stltpush _3(RuTPU)RU\TPU\pers\47301 |
|
701 | 1 |
_aLaptev _bR. S. _cphysicist, specialist in the field of non-destructive testing _cAssociate Scientist of Tomsk Polytechnic University, Assistant, Candidate of Sciences _f1987- _gRoman Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\31884 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа ядерных технологий _bОтделение экспериментальной физики _h7865 _2stltpush _3(RuTPU)RU\TPU\col\23549 |
801 | 2 |
_aRU _b63413507 _c20230710 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.3390/ma16103742 | |
942 | _cCF |