000 04341nlm1a2200577 4500
001 669626
005 20231030042229.0
035 _a(RuTPU)RU\TPU\network\40878
035 _aRU\TPU\network\40485
090 _a669626
100 _a20230711a2023 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEffect of Transfer Film on Tribological Properties of Anti-Friction PEI- and PI-Based Composites at Elevated Temperatures
_fS. V. Panin, Luo Jiangkun, D. G. Buslovich [et al.]
203 _aText
_celectronic
320 _a[References: 67 tit.]
330 _aThe structure, mechanical and tribological properties of the PEI- and PI-based composites reinforced with Chopped Carbon Fibers (CCF) and loaded with commercially available micron-sized solid lubricant fillers of various nature (polymeric-PTFE, and crystalline-Gr and MoS2) were studied in the temperature range of 23–180 (240) °C. It was shown that tribological properties of these ternary composites were determined by the regularities of the transfer film (TF) adherence on their wear track surfaces. The patterns of TFs formation depended on the chemical structure of the polymer matrix (stiffness/flexibility) as well as the tribological test temperatures. Loading with PTFE solid lubricant particles, along with the strengthening effect of CCF, facilitated the formation and fixation of the TF on the sliding surfaces of the more compliant PEI-based composite at room temperature. In this case, a very low coefficient of friction (CoF) value of about 0.05 was observed. For the more rigid identically filled PI-based composite, the CoF value was twice as high under the same conditions. At elevated temperatures, rising both CoF levels and oscillation of their values made it difficult to retain the non-polar PTFE transfer film on the sliding surfaces of the PI-based composite. As a result, friction of the ceramic counterpart proceeded over the composite surface without any protecting TF at T ? 180 °C. For the sample with the more flexible PEI matrix, the PTFE-containing TF was retained on its sliding surface, providing a low WR level even under CoF rising and oscillating conditions. A similar analysis was carried out for the less efficient crystalline solid lubricant filler MoS2.
461 _tPolymers
463 _tVol. 14, iss. 6
_v[1215, 28 p. ]
_d2023
610 1 _aтруды учёных ТПУ
610 1 _aэлектронный ресурс
610 1 _apolyimide
610 1 _apolyetherimide
610 1 _atransfer film
610 1 _acarbon fibers
610 1 _apolytetrafluoroethylene
610 1 _amolybdenum disulfide
610 1 _aelastic modulus
610 1 _acoefficient of friction
610 1 _awear rate
610 1 _aполимиды
610 1 _aпереводные пленки
610 1 _aполиэфиримиды
610 1 _aуглеродные волокна
610 1 _aполитетрафторэтилен
610 1 _aдисульфид молибдена
610 1 _aмодуль упругости
610 1 _aкоэффициент трения
610 1 _aскорость износа
701 1 _aPanin
_bS. V.
_cspecialist in the field of material science
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1971-
_gSergey Viktorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32910
701 0 _aLuo Jiangkun
701 1 _aBuslovich
_bD. G.
_cspecialist in material science
_cassistant of Tomsk Polytechnic University
_f1993-
_gDmitry Gennadjevich
_2stltpush
_3(RuTPU)RU\TPU\pers\40084
701 1 _aAleksenko
_bV. O.
_cspecialist in the field of material science
_cengineer of Tomsk Polytechnic University
_f1991-
_gVladislav Olegovich
_2stltpush
_3(RuTPU)RU\TPU\pers\40085
701 1 _aBerto
_bF.
_gFilippo
701 1 _aKornienko
_bL. A.
_gLyudmila Aleksandrovna
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа новых производственных технологий
_bОтделение материаловедения
_h7871
_2stltpush
_3(RuTPU)RU\TPU\col\23508
801 2 _aRU
_b63413507
_c20230711
_gRCR
856 4 _uhttps://doi.org/10.3390/polym14061215
942 _cCF