A Texture Fuzzy Classifier Based on the Training Set Clustering by a Self-Organizing Neural Network / S. V. Aksenov, K. A. Kostin, D. N. Laykom

Уровень набора: Communications in Computer and Information ScienceОсновной Автор-лицо: Aksenov, S. V., Specialist in the field of informatics and computer technology, Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences, 1983-, Sergey VladimirovichАльтернативный автор-лицо: Kostin, K. A., specialist in the field of Informatics and computer engineering, engineer at Tomsk Polytechnic University, 1992-, Kirill Aleksandrovich;Laykom, D. N., specialist in the field of informatics and computer technology, Engineer of Tomsk Polytechnic University, 1990-, Dmitriy NikolaevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК), Кафедра прикладной математики (ПМ)Язык: английский.Резюме или реферат: The paper presents a fuzzy approach to the texture classification. According to the classifier the texture class is represented as a set of clusters in N-dimensional feature space that allows generating a cluster or clusters with an arbitrary shape and precisely reflecting any group of the vectors connected with the class. For each texture class it configures the self-organizing features map and estimates a degree of the overlap of the neighboring classes. Upon matching the maps each of them creates a set of fuzzy rules reflecting the feature value statistical distribution in its clusters. Advantages of the system are simplicity of the structure generation, functioning and performance. The suggested classification technique is universal and can be used not only as a texture analyzer but independently for many other real-world classification tasks..Примечания о наличии в документе библиографии/указателя: [References: 21 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | самоорганизующиеся карты Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 21 tit.]

The paper presents a fuzzy approach to the texture classification. According to the classifier the texture class is represented as a set of clusters in N-dimensional feature space that allows generating a cluster or clusters with an arbitrary shape and precisely reflecting any group of the vectors connected with the class. For each texture class it configures the self-organizing features map and estimates a degree of the overlap of the neighboring classes. Upon matching the maps each of them creates a set of fuzzy rules reflecting the feature value statistical distribution in its clusters. Advantages of the system are simplicity of the structure generation, functioning and performance. The suggested classification technique is universal and can be used not only as a texture analyzer but independently for many other real-world classification tasks.

Для данного заглавия нет комментариев.

оставить комментарий.