Comparison of object classification methods in seed stream separation / A. V. Vlasov, A. S. Fadeev

Уровень набора: (RuTPU)RU\TPU\network\18167, Advances in Computer Science ResearchОсновной Автор-лицо: Vlasov, A. V., specialist in the field of informatics and computer technology, postgraduate of Tomsk Polytechnic University, 1991-, Andrey VladimirovichАльтернативный автор-лицо: Fadeev, A. S., specialist in the field of informatics and computer technology, associate Professor of Tomsk Polytechnic University, Candidate of technical sciences, 1981-, Aleksandr SergeevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Страна: France.Резюме или реферат: The paper presents a study of machine learning approaches to detect and classify seeds of a grain crop in order to enhance agricultural seed purification line. The main features of seeds that are hard to recognize during a separation with mechanical methods are resolved with the help of machine learning approach. The main machine learning methods used in research was traditional machine learning and deep learning based on neural networks. A special training image database was retrieved in order to check if the stated approaches are reasonable to use and develop. A set of tests is provided to show the effectiveness of the machine learning applied to solve the stated problem..Примечания о наличии в документе библиографии/указателя: [References: p. 181 (15 tit.)].Тематика: электронный ресурс | труды учёных ТПУ | image processing | seeds sorting | classification | feature extraction | convolutional neural network | automatic detection | grains | agriculture | обработка изображений | классификация | нейронные сети | автоматическое обнаружение | зерна | сельское хозяйство | машинное обучение | зерновые культуры Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 181 (15 tit.)]

The paper presents a study of machine learning approaches to detect and classify seeds of a grain crop in order to enhance agricultural seed purification line. The main features of seeds that are hard to recognize during a separation with mechanical methods are resolved with the help of machine learning approach. The main machine learning methods used in research was traditional machine learning and deep learning based on neural networks. A special training image database was retrieved in order to check if the stated approaches are reasonable to use and develop. A set of tests is provided to show the effectiveness of the machine learning applied to solve the stated problem.

Для данного заглавия нет комментариев.

оставить комментарий.