GMDH-Based Learning System for Mobile Robot Navigation in Heterogeneous Environment / A. A. Andrakhanov, A. S. Belyaev

Уровень набора: Advances in Intelligent Systems and Computing IIОсновной Автор-лицо: Andrakhanov, A. A., Specialist in the field of electrical engineering, Assistant of the Department of Tomsk Polytechnic University, 1982-, Anatoliy AleksandrovichАльтернативный автор-лицо: Belyaev, A. S., Specialist in the field of informatics and computer technology, Assistant to Tomsk Polytechnic University, 1994-, Aleksandr SergeevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение автоматизации и робототехникиЯзык: английский.Серия: Advances in Intelligent Systems and Computing book seriesРезюме или реферат: One of the key tasks of mobile robotics is navigation, which for Outdoor-type robots is exacerbated by the functioning in an environment with a priori of unknown characteristics of underlying surfaces. In this paper, for the first time, the learning navigation system for mobile robot based on the group method of data handling (GMDH) is presented. The paper presents the results of training of models both for evaluating the robot’s pose (coordinates and angular orientation) in heterogeneous environment and classification of the type of underlying surfaces. In addition to the direct readings of the on-board sensors, additional parameters (reflecting how the robot perceives the surface terramechanics) were introduced to train the models. The results of testing of the obtained models demonstrate their performance in an essentially heterogeneous environment, when areas of the underlying surfaces are comparable with the robot’s dimensions. This testifies the operability of developed GMDH-based learning system for mobile robot navigation..Примечания о наличии в документе библиографии/указателя: [References: 17 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | mobile robot | heterogeneous environment | underlying surface | testing ground | navigation | coordinates evaluation | machine learning | inductive modeling | GMDH | active neuron | Festo Robotino | мобильные роботы | гетерогенная среда | подстилающие поверхности | испытательные полигоны | навигация | машинное обучение | моделирование Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 17 tit.]

One of the key tasks of mobile robotics is navigation, which for Outdoor-type robots is exacerbated by the functioning in an environment with a priori of unknown characteristics of underlying surfaces. In this paper, for the first time, the learning navigation system for mobile robot based on the group method of data handling (GMDH) is presented. The paper presents the results of training of models both for evaluating the robot’s pose (coordinates and angular orientation) in heterogeneous environment and classification of the type of underlying surfaces. In addition to the direct readings of the on-board sensors, additional parameters (reflecting how the robot perceives the surface terramechanics) were introduced to train the models. The results of testing of the obtained models demonstrate their performance in an essentially heterogeneous environment, when areas of the underlying surfaces are comparable with the robot’s dimensions. This testifies the operability of developed GMDH-based learning system for mobile robot navigation.

Для данного заглавия нет комментариев.

оставить комментарий.