Application of Convolutional Neural Networks for Automatic Number Plate Recognition on Complex Background Images / A. A. Druki, Yu. A. Bolotova, V. G. Spitsyn

Уровень набора: (RuTPU)RU\TPU\network\5920, Applied Mechanics and Materials, Scientific JournalОсновной Автор-лицо: Druki, A. A., specialist in the field of informatics and computer technology, assistant of Tomsk Polytechnic University, engineer, 1985-, Aleksey AlekseevichАльтернативный автор-лицо: Bolotova, Yu. A., specialist in the field of informatics and computer technology, Postgraduate of Tomsk Polytechnic University, 1986-, Yuliya Aleksandrovna;Spitsyn, V. G., specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, Doctor of technical sciences, 1948-, Vladimir GrigorievichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК), Кафедра вычислительной техники (ВТ)Язык: английский.Серия: Image and Signal Processing, Recognition, Information Processing and Applied TechnologiesРезюме или реферат: The relevance of this study is stipulated by the necessity of designing techniques, algorithms, and programs improving the efficiency of automatic number plate recognition (ANPR) on images with complex backgrounds.Purpose: The aim of this work is to improve the efficiency of automatic number plate recognition on images with complex backgrounds using methods, algorithms, and programs invariant to affine and projective transformations.Design/methodology: Such techniques as artificial intelligence, pattern identification and recognition, the theory of artificial neural networks (ANN), convolutional neural networks (CNN), evolutionary algorithms, mathematical modeling, the probability theory and mathematical statistics were applied via Visual Studio and MatLab software.Findings: The software is developed allowing the automatic number plate recognition on complex background images. The convolutional neural network comprising seven layers is suggested to identify the plate localization, i.e. finding and isolating the plate on the picture. The pixel intensity histogram-based algorithm was used for character segmentation or finding individual characters on the plates. The convolutional neural network comprising six layers is designed to recognize characters. The suggested software system allows automatic number plate recognition at large angles of inclinations and rather a high speed..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | искусственный интеллект | распознавание символов | обработка | изображения | гистограммы | нейтронные сети Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

The relevance of this study is stipulated by the necessity of designing techniques, algorithms, and programs improving the efficiency of automatic number plate recognition (ANPR) on images with complex backgrounds.Purpose: The aim of this work is to improve the efficiency of automatic number plate recognition on images with complex backgrounds using methods, algorithms, and programs invariant to affine and projective transformations.Design/methodology: Such techniques as artificial intelligence, pattern identification and recognition, the theory of artificial neural networks (ANN), convolutional neural networks (CNN), evolutionary algorithms, mathematical modeling, the probability theory and mathematical statistics were applied via Visual Studio and MatLab software.Findings: The software is developed allowing the automatic number plate recognition on complex background images. The convolutional neural network comprising seven layers is suggested to identify the plate localization, i.e. finding and isolating the plate on the picture. The pixel intensity histogram-based algorithm was used for character segmentation or finding individual characters on the plates. The convolutional neural network comprising six layers is designed to recognize characters. The suggested software system allows automatic number plate recognition at large angles of inclinations and rather a high speed.

Для данного заглавия нет комментариев.

оставить комментарий.