Neural network technologies for image classification / A. M. Korikov, A. V. Tungusova

Уровень набора: (RuTPU)RU\TPU\network\12028, Proceedings of SPIEОсновной Автор-лицо: Korikov, A. M., radiophysicist, specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, doctor of technical sciences, 1942-, Anatoly MikhailovichАльтернативный автор-лицо: Tungusova, A. V., Anna VladimirovnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК), Кафедра автоматики и компьютерных систем (АИКС)Язык: английский.Резюме или реферат: We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only..Примечания о наличии в документе библиографии/указателя: [References: 7 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 7 tit.]

We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Для данного заглавия нет комментариев.

оставить комментарий.