Compact convolutional neural network cascadefor face detection / I. A. Kalinovsky, V. G. Spitsyn

Уровень набора: CEUR Workshop Proceedings, Online Proceedings for Scientific Conferences and WorkshopsОсновной Автор-лицо: Kalinovsky, I. A., specialist in the field of Informatics and computer engineering, assistant at Tomsk Polytechnic University, 1990-, Iljya AndreevichАльтернативный автор-лицо: Spitsyn, V. G., specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, Doctor of technical sciences, 1948-, Vladimir GrigorievichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК), Кафедра вычислительной техники (ВТ)Язык: английский.Страна: .Резюме или реферат: This paper presents a new solution to the frontal face detection problem based on a compact convolutional neural networks cascade. Test results on an FDDB dataset show that it is able to compete with state-of-the-art algorithms. This proposed detector is implemented using three technologies: SSE/AVX/AVX2 instruction sets for Intel CPUs, Nvidia CUDA, and OpenCL. The detection speed of our approach exceeds considerably all the existing CPUbased and GPU-based algorithms. Thanks to its high computational efficiency, our detector can process 4K Ultra HD video stream in real time (up to 27 fps) on mobile platforms while searching objects with a dimension of 60×60 pixels or higher. At the same time, its processing speed is almost independent of the background and the number of objects in a scene. This is achieved by asynchronous computation of stages in the cascade..Тематика: электронный ресурс | труды учёных ТПУ | распознавание лиц | нейронные сети | классификаторы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

This paper presents a new solution to the frontal face detection problem based on a compact convolutional neural networks cascade. Test results on an FDDB dataset show that it is able to compete with state-of-the-art algorithms. This proposed detector is implemented using three technologies: SSE/AVX/AVX2 instruction sets for Intel CPUs, Nvidia CUDA, and OpenCL. The detection speed of our approach exceeds considerably all the existing CPUbased and GPU-based algorithms. Thanks to its high computational efficiency, our detector can process 4K Ultra HD video stream in real time (up to 27 fps) on mobile platforms while searching objects with a dimension of 60×60 pixels or higher. At the same time, its processing speed is almost independent of the background and the number of objects in a scene. This is achieved by asynchronous computation of stages in the cascade.

Для данного заглавия нет комментариев.

оставить комментарий.