Changing the Shape of Watt-Ampere Characteristic of LEDs Based upon GaP ([lambda]=590 nm) Irradiated by Gamma-Quanta / A. V. Gradoboev, K. N. Orlova, A. V. Simonova

Уровень набора: (RuTPU)RU\TPU\network\24092, Materials Science Forum, Scientific JournalОсновной Автор-лицо: Gradoboev, A. V., physicist, Professor of Yurga technological Institute of Tomsk Polytechnic University, Doctor of technical sciences, 1952-, Aleksandr VasilyevichАльтернативный автор-лицо: Orlova, K. N., physicist, Associate Professor of Yurga technological Institute of Tomsk Polytechnic University, Candidate of technical sciences, 1985-, Kseniya Nikolaevna;Simonova, A. V., Physicist, Assistant of the Department of Tomsk Polytechnic University, 1990-, Anastasia VladimirovnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа неразрушающего контроля и безопасности, Отделение контроля и диагностикиЯзык: английский.Страна: .Резюме или реферат: There are two distinctive regions can be identified (low (LC) and high currents (HC)) of a watt-ampere (W-I) characteristic of initial LEDs based upon GaP with 590 nm wavelength. The established patterns differ in the exponent. At the same time, the LC region corresponds to an increase in the efficiency of conversion of operating current into light radiation, and the HC region is a slow decline with an increase in the operating current. As a result of irradiation with gamma-quanta in the passive power mode, the change in the shape of W-I characteristic is established, which can be characterized by an increase in the threshold current separating the LC and HC regions with an increase in the irradiation dose. The change in the emissive power of the LEDs and the shift of the threshold current occurs in two stages: in the first stage, the emissive power decreases due to radiation-stimulated rearrangement of the initial defect structure. At the same time, with an increase in the radiation dose, a partial recovery of the emissive power is observed against the background of its overall decrease. At the end of the first stage, the dependence of the damage coefficient on the operating current density in measurements of the W-I characteristics is manifested explicitly. The second stage of reducing the emissive power due to the introduction of radiation defects. In this case, the damage coefficient does not depend on the working current density, and the observed differences are due to the fact that by the end of the first stage its contribution to the overall reduction in emissive power is inversely proportional to the working current density. The established patterns can be used at the stage of designing the LEDs to substantiate the choice of the optimal value of the operating current density and to predict the resistance to irradiation with gamma rays..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Emissive Power | Gamma-Quanta | GaP | Light-Emitting Diodes | светодиоды | гамма-кванты | дозы облучения | радиационные дефекты Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

There are two distinctive regions can be identified (low (LC) and high currents (HC)) of a watt-ampere (W-I) characteristic of initial LEDs based upon GaP with 590 nm wavelength. The established patterns differ in the exponent. At the same time, the LC region corresponds to an increase in the efficiency of conversion of operating current into light radiation, and the HC region is a slow decline with an increase in the operating current. As a result of irradiation with gamma-quanta in the passive power mode, the change in the shape of W-I characteristic is established, which can be characterized by an increase in the threshold current separating the LC and HC regions with an increase in the irradiation dose. The change in the emissive power of the LEDs and the shift of the threshold current occurs in two stages: in the first stage, the emissive power decreases due to radiation-stimulated rearrangement of the initial defect structure. At the same time, with an increase in the radiation dose, a partial recovery of the emissive power is observed against the background of its overall decrease. At the end of the first stage, the dependence of the damage coefficient on the operating current density in measurements of the W-I characteristics is manifested explicitly. The second stage of reducing the emissive power due to the introduction of radiation defects. In this case, the damage coefficient does not depend on the working current density, and the observed differences are due to the fact that by the end of the first stage its contribution to the overall reduction in emissive power is inversely proportional to the working current density. The established patterns can be used at the stage of designing the LEDs to substantiate the choice of the optimal value of the operating current density and to predict the resistance to irradiation with gamma rays.

Для данного заглавия нет комментариев.

оставить комментарий.