Combining Crowd and Machines for Multi-predicate Item Screening / E. Krivosheev, F. Casati, G. M. A. Baez, B. Benatallah

Уровень набора: Human-Computer InteractionАльтернативный автор-лицо: Krivosheev, E., Evgeny;Casati, F., Italian economist and Professor at the University of Trento (Italy), Professor of Tomsk Polytechnic University, candidate of technical Sciences, 1971-, Fabio;Baez, G. M. A., philosopher, associate scientist of Tomsk Polytechnic University, candidate of philosophical sciences, 1983-, Gonzalez Markos Antonio;Benatallah, B., BoualemКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Институт социально-гуманитарных технологий, Кафедра экономики, Международная научно-образовательная лаборатория технологий улучшения благополучия пожилых людейЯзык: английский.Резюме или реферат: This paper discusses how crowd and machine classifiers can be efficiently combined to screen items that satisfy a set of predicates. We show that this is a recurring problem in many domains, present machine-human (hybrid) algorithms that screen items efficiently and estimate the gain over human-only or machine-only screening in terms of performance and cost. We further show how, given a new classification problem and a set of classifiers of unknown accuracy for the problem at hand, we can identify how to manage the cost-accuracy trade off by progressively determining if we should spend budget to obtain test data (to assess the accuracy of the given classifiers), or to train an ensemble of classifiers, or whether we should leverage the existing machine classifiers with the crowd, and in this case how to efficiently combine them based on their estimated characteristics to obtain the classification. We demonstrate that the techniques we propose obtain significant cost/accuracy improvements with respect to the leading classification algorithms..Примечания о наличии в документе библиографии/указателя: [References: 45 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | классификаторы | алгоритмы | идентификация | фильтры | базы данных | данные Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 45 tit.]

This paper discusses how crowd and machine classifiers can be efficiently combined to screen items that satisfy a set of predicates. We show that this is a recurring problem in many domains, present machine-human (hybrid) algorithms that screen items efficiently and estimate the gain over human-only or machine-only screening in terms of performance and cost. We further show how, given a new classification problem and a set of classifiers of unknown accuracy for the problem at hand, we can identify how to manage the cost-accuracy trade off by progressively determining if we should spend budget to obtain test data (to assess the accuracy of the given classifiers), or to train an ensemble of classifiers, or whether we should leverage the existing machine classifiers with the crowd, and in this case how to efficiently combine them based on their estimated characteristics to obtain the classification. We demonstrate that the techniques we propose obtain significant cost/accuracy improvements with respect to the leading classification algorithms.

Для данного заглавия нет комментариев.

оставить комментарий.