Twisted graphene in graphite: Impact on surface potential and chemical stability / Tran Tuan Hoang, R. D. Rodriguez (Rodriges) Contreras, M. Salerno [et al.]

Уровень набора: CarbonАльтернативный автор-лицо: Tran Tuan Hoang, specialist in the field of nuclear technologies, engineer of Tomsk Polytechnic University, 1993-;Rodriguez (Rodriges) Contreras, R. D., Venezuelan physicist, doctor of science, Professor of Tomsk Polytechnic University, 1982-, Raul David;Salerno, M., Marco;Matkovic, A., Aleksandar;Teichert, Ch., Christian;Sheremet, E. S., physicist, Professor of Tomsk Polytechnic University, 1988-, Evgeniya SergeevnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа химических и биомедицинских технологий, (2017- );Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Резюме или реферат: Highly-oriented pyrolytic graphite (HOPG), i.e., the 3D stack of sp2-hybridized carbon sheets, is an attractive material thanks to its high electrical conductivity, chemical inertness, thermal stability, atomic-scale flatness, and ease of exfoliation. Despite an apparently ideal and uniform material, freshly cleaved HOPG shows domains in Kelvin probe force microscopy (KPFM) with surface potential contrast over 30 mV. We systematically investigated these domains using an integrated approach, including time-dependent KPFM and hyperspectral Raman imaging. The observed time-evolving domains are attributed to locally different hydrocarbon adsorption from the environment, driven by structural defects likely related to rotational mismatch, i.e., twisted layers. These defects affect the interlayer coupling between topmost graphene and the underlying layers. Our hypothesis was supported by Raman spectroscopy results, showing domains with G peak shifts and 2D line shape compatible with bilayer graphene. We attribute the selective sensitivity of our Raman spectroscopy results to the top graphene layers as resonances due to van Hove singularities. Our results show that the chemical and electrical properties of HOPG are far more complex than what is generally believed due to the broken symmetry at the top surface, giving rise to graphene bilayer-like behavior..Примечания о наличии в документе библиографии/указателя: [References: 68 tit.].Аудитория: .Тематика: труды учёных ТПУ | электронный ресурс | graphene | graphite | moiré pattern | twisted bi-layers | Kelvin probe force microscopy | HOPG | surface contamination | Raman spectroscopy | contact potential difference | силовая микроскопия | графены | поверхностный потенциал | загрязнения | поверхности | спектроскопия | графиты | химическая стабильность | поверхностный потенциал Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 68 tit.]

Highly-oriented pyrolytic graphite (HOPG), i.e., the 3D stack of sp2-hybridized carbon sheets, is an attractive material thanks to its high electrical conductivity, chemical inertness, thermal stability, atomic-scale flatness, and ease of exfoliation. Despite an apparently ideal and uniform material, freshly cleaved HOPG shows domains in Kelvin probe force microscopy (KPFM) with surface potential contrast over 30 mV. We systematically investigated these domains using an integrated approach, including time-dependent KPFM and hyperspectral Raman imaging. The observed time-evolving domains are attributed to locally different hydrocarbon adsorption from the environment, driven by structural defects likely related to rotational mismatch, i.e., twisted layers. These defects affect the interlayer coupling between topmost graphene and the underlying layers. Our hypothesis was supported by Raman spectroscopy results, showing domains with G peak shifts and 2D line shape compatible with bilayer graphene. We attribute the selective sensitivity of our Raman spectroscopy results to the top graphene layers as resonances due to van Hove singularities. Our results show that the chemical and electrical properties of HOPG are far more complex than what is generally believed due to the broken symmetry at the top surface, giving rise to graphene bilayer-like behavior.

Для данного заглавия нет комментариев.

оставить комментарий.