Aortography Keypoint Tracking for Transcatheter Aortic Valve Implantation Based on Multi-Task Learning / V. V. Danilov, K. Yu. Klyshnikov, O. M. Gerget [et al.]

Уровень набора: Frontiers in Cardiovascular MedicineАльтернативный автор-лицо: Danilov, V. V., specialist in the field of informatics and computer technology, engineer of Tomsk Polytechnic University, 1989-, Vyacheslav Vladimirovich;Klyshnikov, K. Yu., Kirill Yurjevich;Gerget, O. M., Specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, Doctor of Sciences, 1974-, Olga Mikhailovna;Skirnevsky, I. P., specialist in the field of automation and computer systems, educational master Tomsk Polytechnic University, 1989-, Igor Petrovich;Kutikhin, A. G., Anton Gennadievich;Shilov, A. A., Aleksandr;Ganuykov, V. I., Vladimir;Ovcharenko, E. A., Evgeny AndreevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Научно-образовательная лаборатория обработки и анализа больших данных;Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Страна: .Резюме или реферат: Currently, transcatheter aortic valve implantation (TAVI) represents the most efficient treatment option for patients with aortic stenosis, yet its clinical outcomes largely depend on the accuracy of valve positioning that is frequently complicated when routine imaging modalities are applied. Therefore, existing limitations of perioperative imaging underscore the need for the development of novel visual assistance systems enabling accurate procedures. In this paper, we propose an original multi-task learning-based algorithm for tracking the location of anatomical landmarks and labeling critical keypoints on both aortic valve and delivery system during TAVI. In order to optimize the speed and precision of labeling, we designed nine neural networks and then tested them to predict 11 keypoints of interest. These models were based on a variety of neural network architectures, namely MobileNet V2, ResNet V2, Inception V3, Inception ResNet V2 and EfficientNet B5. During training and validation, ResNet V2 and MobileNet V2 architectures showed the best prediction accuracy/time ratio, predicting keypoint labels and coordinates with 97/96% accuracy and 4.7/5.6% mean absolute error, respectively. Our study provides evidence that neural networks with these architectures are capable to perform real-time predictions of aortic valve and delivery system location, thereby contributing to the proper valve positioning during TAVI..Примечания о наличии в документе библиографии/указателя: [References: 34 tit.]..Тематика: электронный ресурс | труды учёных ТПУ | keypoint tracking | multi-task learning | transcatheter aortic valve replacement | deep learning-CNN | medical image analysis | aortography | отслеживание | ключевые точки | замена | клапаны | медицинские изображения | аортография | имплантация | визуализация | многозадачное обучение Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 34 tit.].

Currently, transcatheter aortic valve implantation (TAVI) represents the most efficient treatment option for patients with aortic stenosis, yet its clinical outcomes largely depend on the accuracy of valve positioning that is frequently complicated when routine imaging modalities are applied. Therefore, existing limitations of perioperative imaging underscore the need for the development of novel visual assistance systems enabling accurate procedures. In this paper, we propose an original multi-task learning-based algorithm for tracking the location of anatomical landmarks and labeling critical keypoints on both aortic valve and delivery system during TAVI. In order to optimize the speed and precision of labeling, we designed nine neural networks and then tested them to predict 11 keypoints of interest. These models were based on a variety of neural network architectures, namely MobileNet V2, ResNet V2, Inception V3, Inception ResNet V2 and EfficientNet B5. During training and validation, ResNet V2 and MobileNet V2 architectures showed the best prediction accuracy/time ratio, predicting keypoint labels and coordinates with 97/96% accuracy and 4.7/5.6% mean absolute error, respectively. Our study provides evidence that neural networks with these architectures are capable to perform real-time predictions of aortic valve and delivery system location, thereby contributing to the proper valve positioning during TAVI.

Российский научный фонд 18-75-10061

Для данного заглавия нет комментариев.

оставить комментарий.