Quantum marine predators algorithm for addressing multilevel image segmentation / A. M. Mokhamed Elsaed, Mohammadi Davood, D. A. Oliva Navarro, K. Salimifard

Уровень набора: Applied Soft ComputingАльтернативный автор-лицо: Mokhamed Elsaed, A. M., Specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, 1987-, Akhmed Mokhamed;Mohammadi Davood;Oliva Navarro, D. A., specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, 1983-, Diego Alberto;Salimifard, K.Коллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Страна: .Резюме или реферат: This paper proposes a modified marine predators algorithm based on quantum theory to handle the multilevel image segmentation problem. The main aims of using quantum theory is to enhance the ability of marine predators algorithm to find the optimal threshold levels to enhance the segmentation process. The proposed quantum marine predators algorithm gets the idea of finding a particle in the space based on a possible function borrowed from the Schrodinger wave function that determines the position of each particle at any time. This rectification in the search mechanism of the marine predators algorithm contributes to strengthening of exploration and exploitation of the algorithm. To analyze the performance of the proposed algorithm, we conduct a set of experiments. In the first experiment, the results of the developed quantum marine predators algorithm are compared with eight well-known meta-heuristics based on benchmark test functions. The second experiment demonstrates the applicability of the algorithm, in addressing multilevel threshold image segmentation. A set of ten gray-scale images assess the quality of the quantum marine predators algorithm and its performance is compared with other meta-heuristic algorithms. The experimental results show that the proposed algorithm performs well compared with other algorithms in terms of convergence and the quality of segmentation..Примечания о наличии в документе библиографии/указателя: [References: 70 tit.].Тематика: труды учёных ТПУ | электронный ресурс | marine predators algorithm | quantum theory | swarm intelligence | image segmentation | global optimization | алгоритмы | морские животные | квантовая теория | сегментация | изображения | глобальная оптимизация Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 70 tit.]

This paper proposes a modified marine predators algorithm based on quantum theory to handle the multilevel image segmentation problem. The main aims of using quantum theory is to enhance the ability of marine predators algorithm to find the optimal threshold levels to enhance the segmentation process. The proposed quantum marine predators algorithm gets the idea of finding a particle in the space based on a possible function borrowed from the Schrodinger wave function that determines the position of each particle at any time. This rectification in the search mechanism of the marine predators algorithm contributes to strengthening of exploration and exploitation of the algorithm. To analyze the performance of the proposed algorithm, we conduct a set of experiments. In the first experiment, the results of the developed quantum marine predators algorithm are compared with eight well-known meta-heuristics based on benchmark test functions. The second experiment demonstrates the applicability of the algorithm, in addressing multilevel threshold image segmentation. A set of ten gray-scale images assess the quality of the quantum marine predators algorithm and its performance is compared with other meta-heuristic algorithms. The experimental results show that the proposed algorithm performs well compared with other algorithms in terms of convergence and the quality of segmentation.

Для данного заглавия нет комментариев.

оставить комментарий.