Найдено 8 результатов.

Сортировать
Результаты
1.
2.
Making 3D model of atrioventricular xenopericardial bioprosthesis from X-ray computed tomography data / D. V. Ivashkov [et al.]Уровень набора: (RuTPU)RU\TPU\network\20157, 11th International Forum on Strategic Technology (IFOST 2016), 1-3 June 2016, Novosibirsk, Russiain, in 2 pt., [proceedings] / Novosibirsk State Technical University = 2016Доступность: :

3.
Comparative Study of Deep Learning Modelsfor Automatic Coronary Stenosis Detectionin X-ray Angiography / V. V. Danilov, O. M. Gerget, K. Yu. Klyshnikov[et al.]Уровень набора: CEUR Workshop Proceedings, Online Proceedings for Scientific Conferences and WorkshopsДоступность: :

4.
Numerical Method for Predicting Hemodynamic Effects in Vascular Prostheses / V. G. Borisov, Yu. N. Zakharov, Yu. I. Shokin [et al.]Уровень набора: Numerical Analysis and ApplicationsДоступность: :

5.
Analysis of Deep Neural Networks for Detection of Coronary Artery Stenosis / V. V. Danilov, O. M. Gerget, K. Yu. Klyshnikov [et al.]Уровень набора: Programming and Computer SoftwareДоступность: :

6.
7.
Aortography Keypoint Tracking for Transcatheter Aortic Valve Implantation Based on Multi-Task Learning / V. V. Danilov, K. Yu. Klyshnikov, O. M. Gerget [et al.]Уровень набора: Frontiers in Cardiovascular MedicineДоступность: :

8.
Real-time coronary artery stenosis detection based on modern neural networks / V. V. Danilov, K. Yu. Klyshnikov, O. M. Gerget [et al.]Уровень набора: Scientific ReportsДоступность: :